Maximum margin learning and adaptation of MLP classifiers

نویسندگان

  • Xiao Li
  • Jeff A. Bilmes
  • Jonathan Malkin
چکیده

Conventional MLP classifiers used in phonetic recognition and speech recognition may encounter local minima during training, and they often lack an intuitive and flexible adaptation approach. This paper presents a hybrid MLP-SVM classifier and its associated adaptation strategy, where the last layer of a conventional MLP is learned and adapted in the maximum separation margin sense. This structure also provides a support vector based adaptation mechanism which better interpolates between a speaker-independent model and speakerdependent adaptation data. Preliminary experiments on vowel classification have shown promising results for both MLP learning and adaptation problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

Online Learning of Maximum p-Norm Margin Classifiers with Bias

We propose a new online learning algorithm which provably approximates maximum margin classifiers with bias, where the margin is defined in terms of p-norm distance. Although learning of linear classifiers with bias can be reduced to learning of those without bias, the known reduction might lose the margin and slow down the convergence of online learning algorithms. Our algorithm, unlike previo...

متن کامل

Stochastic margin-based structure learning of Bayesian network classifiers

The margin criterion for parameter learning in graphical models gained significant impact over the last years. We use the maximum margin score for discriminatively optimizing the structure of Bayesian network classifiers. Furthermore, greedy hill-climbing and simulated annealing search heuristics are applied to determine the classifier structures. In the experiments, we demonstrate the advantag...

متن کامل

Comparison of Different Classifiers on a Reduced Set of Features for Mental Tasks-based Brain Computer Interface

In this study a comparison among three different machine learning techniques for the classification of mental tasks for a Brain-Computer Interface system is presented: MLP neural network, Fuzzy C-Means Analysis and Support Vector Machine (SVM). In BCI literature, finding the best classifier is a very hard problem to solve, and it is still an open question. We considered only ten electrodes for ...

متن کامل

Online Learning of Approximate Maximum Margin Classifiers with Biases

We consider online learning of linear classifiers which approximately maximize the 2-norm margin. Given a linearly separable sequence of instances, typical online learning algorithms such as Perceptron and its variants, map them into an augmented space with an extra dimension, so that those instances are separated by a linear classifier without a constant bias term. However, this mapping might ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005